

Parameterized turbine performance

AWEA Wind Resource Assessment Seminar - Orlando, Fl. December 2, 2014 Alex Head, Mat Colls, Stuart Baylis

About Prevailing

- " Wind farm analysis specialists
- " 500 wind farms analysed in 18 countries
- " Developer, Lender and Acquisitions roles
- " Pre-construction and operational
- " US office in Portland, OR

Site specific performance

- " A calculated power curve is calculated in a particular set of conditions (shear, turbulence etc.).
- We can ask two questions:
 - 1. In matching conditions, do measurements agree?
 - 2. How does performance change outside these conditions?
- Today we will focus on answering the second question.

Aim

- To aggregate turbine performance data into a parameterized model:
 - . A single model applicable globally
 - . Spanning variations in geometry of turbines
 - . Across all site conditions
- "Parameters must capture physical drivers of performance variation
 - . Rotor aerodynamics
 - . Controller influence
- " To be used to predict turbine performance with pre-construction mast data.

What do you do?

If you combine parameters respond "Other"

Current practice

(data for illustrative purposes)

- " Various methods in use
- Theoretical or dataderived
- " Often parameterized
 - . Fixed adjustment
 - . Shear
 - . Turbulence
 - . Wind speed
 - . Geometry
 - . Turbine type
 - . Geography
 - . Density
- 2D binning misses significant performance variation

		W	in	d	spe	ed/	turk	oule	nce		
	4		e	5		8		10		12	
24%	120%	112%	10	8%	106%	102%	102%	99%			
	116%	109%	10	6%	104%	104%	102%	101%	100%	96%	97%
16%	111%	105%	10	1%	101%	101%	102%	101%	100%	99%	99%
	99%	96%	96	5%	98%	99%	101%	101%	101%	100%	100%
8%	82%	88%	8	%	92%	95%	98%	100%	101%	102%	101%
	75%	82%	8	%	87%	88%	93%	97%	99%	101%	100%
0%	62%	70%	7	%	78%	81%	84%	88%	94%	100%	101%

Aerodynamic performance variation

- "Blade "lift to drag ratio" (LDR) is a good measure of aerodynamic efficiency
- ^r For any blade, LDR is sensitive to:
 - . Turbulence
 - . Relative wind speed

$$RWSR = U_{top}/U_{bottom}$$

- . Angle of attack variation
- To capture rotor performance, the solution is to aggregate on:
 - . Turbulence
 - . Wind speed
 - . Rotor Wind Speed Ratio
- This captures turbulence, shear and rotor geometry influences on rotor aerodynamic performance

Controller effects

- ["] Distinct cubic and rated power curve phases
- "Wind speed alone doesn't allow comparison
- "Normalize by zero turbulence rated wind speed (from IEC proposed standard)

Resulting parameter set

[‴] Turbulence

- . A factor in blade Lift to Drag performance
- " Rotor wind speed ratio
 - . Correlates with angle of attack variation across rotor
 - . Captures impact of diameter, hub height and shear
- " Normalised wind speed
 - . Wind speed affects blade Lift to Drag performance
 - . Normalised by the zero TI rated speed to align controller modes across turbine types.

Inner and outer range

For any normalised wind speed:

Turbulence Intensity

Data set

Turbulence intensity

Rotor wind speed ratio

			\rightarrow									
V	2%	4%	6%	8%	10%	12%	14%	16%	18%	20%	22%	24%
1.7	72%	73%	75%	79%	79%	80%	82%	71%				
1.6	71%	75%	78%	79%	81%	83%	82%	85%	78%			
1.5	72%	76%	78%	82%	85%	85%	84%	85%	86%	83%	95%	
1.4	72%	75%	81%	85%	85%	84%	84%	89%	90%	92%	94%	95%
1.3	75%	76%	- 80%	84%	86%	85%	90%	92%	92%	98%	98%	108%
1.2	73%	77%	84%	87%	000/	0.2%	05%	100%	105%	105%	108%	114%
1.1	73%	78%	86%	90	Inne	r Range	2	109%	110%	112%	114%	117%
1.0	73%	80%	87%	91-70	10170	10170	10370	108%	(110%	Day	118%	124%
0.9		72%	85%	89%		91%	92%	91%	97%	101%	100%	107%
0.8							88%	87%	82%	89%	91%	97%
0.7							85%	84%	82%	84%	87%	

 $U_{norm} = 0.5$

$V_{\text{wind farm analysis}}$ $U_{\text{norm}} = 0.7$												-
Rotor wind speed ratio									0.5 0.7 Normalised	0.9 1. d wind spe	1 1.3 ⁻ eed	¬ 1.5
\bigvee	2%			8%	10%	12%	14%	16%	18%	20%	22%	24%
1.7	79%	78%	8 3% [Deufeur	1078	12.70	1470		1070	2078	2270	2470
1.6	79%	82%	85%	Perfor	nance v wind cr	aries w	ito and	n i, larg	er roto	rs		
1.5	79%	84%	87%	10101	rhulenc	re inten	sity	her sh				
1.4	80%	86%	88%	91%	94%	96%	96%	96%	95%	99%		
1.3	81%	85%	89%	91%	95%	98%	98%	97%	100%	100%	102%	95%
1.2	81%	88%	90%	92%	040/	000/	100%	100%	102%	104%	103%	106%
1.1	77%	87%	91%	94	Inne	er Range	<u>j</u>	103%	105%	107%	107%	109%
1.0		89%	♥ 93%	9070	/070	100%	10170	104%	105%	105%	111%	103%
0.9							94%	95%	95%	96%	102%	
0.8							90%	93%	92%	95%	97%	
0.7						7	88%	89%	92%	90%	94%	

Rotor wind speed ratio

Turbulence intensity

v	2%	4%	6%	8%	10%	12%	14%	16%	18%	20%	22%	24%
1.7	85%	88%	87%	92%								
1.6	84%	92%	99%	92%	97%							
1.5	85%	93%	96%	95%	94%	102%	98%					
1.4	86%	94%	96%	97%	99%	100%	100%	101%	105%	105%		
1.3	87%	94%	95%	98%	99%	101%	101%	102%	102%	102%	102%	
1.2		95%	96%	98%	00%	1010/	10.20/	102%	102%	103%	102%	101%
1.1	98%	95%	93%	98	Inne	er Range	2	102%	102%	103%	103%	
1.0				97-70	10170	10170	10270	102%	103%	105%		
0.9					96%	100%	100%	97%	92%	93%		
0.8					94%	96%	94%	96%	89%			
0.7							94%	90%	86%			

		evaili	ng	U	norm	= 1.	.1					-
Roto spec	or wind ed ratic) Ionco ii	otonsity	1				0.1 0.3	3 0.5 0.7 Normalised	0.9 1. d wind spe	1 1.3 1 eed	¬ ۱.5
\checkmark	2%	4%	\rightarrow 6%	y 8%	10%	12%	14%	16%	18%	20%	22%	24%
1.7 1.6	91% 91%	90% 102%							Less per	forman	ce varia	tion
1.5	95%	100%	103%						at hig	her win	d speec	ls
1.4	99%	100%	102%	100%	100%	101%	101%	98%]
1.3	101%	99%	102%	102%	102%	102%	101%	99%	100%			
1.2	105%		102%	1020/	1020/	10.20/	1010/	101%	101%	99%	98%	
1.1	106%			10	Inne	r Range	ġ	100%	100%	101%		
1.0				10-70	/ / /0	10070	10370					
0.9					100%	98%						
0.8												
0.7												

Outcome

- Data shows that Turbulence Intensity, Rotor Wind Speed Ratio and Normalised Wind Speed can be used to define a single universal turbine performance model.
- The results show good consistency, across turbine types, geometries and geographies – model captures physical drivers of turbine performance variations.
- It can be easily applied to normal pre-construction data to predict expected turbine performance levels for any given site.
- "It allows higher confidence predictions for new diameters, hub heights and climates.

Next steps

Several refinements are in progress:

- "Expansion of the source data and conditions ranges.
- *Further investigation of variation within bins:*
 - . Turbine type (blade geometry, pitch strategy etc)
 - . Constrained operation
 - . Up- and cross-flow
 - . Directional veer
 - . Non-constant shear
- ″ Link to CFD

Thank you

- Thanks to data contributors
- Send us your PPT data!
 - . Operators, we'll send you free results in exchange for your data.
 - . Manufacturers, we'd welcome engagement.

alex.head@prevailinganalysis.com www.prevailinganalysis.com